l  Colle, Brain A., Zhenhai Zhang, Kelly A. Lombardo, Edmund Chang, Ping Liu, Minghua Zhang 2013: Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, doi: http://dx.doi.org/10.1175/JCLI-D-12-00498.1 

l Chen, Z. H., Zhu, J., and Zeng, N. Improved simulation of regional CO2 surface concentrations using GEOS-Chem and fluxes from VEGAS, Atmos. Chem. Phys., 13, 7607-7618, doi:10.5194/acp-13-7607-2013, 2013.

l  D. Xiao, F. Fang, Juan Du, C.C. Pain, I.M. Navon, A.G. Buchan, A.H. ElSheikh, G. Hu. Non-linear Petrov–Galerkin methods for reduced order modeling of the Navier–Stokes equations using a mixed finite element pair. Computer Methods in Applied Mechanics and Engineering. 2013; 255:147–157.

l  F. Fang, C.C. Pain, I.M. Navon, A.H. Elsheikh, Juan Du, D. Xiao. Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods. Journal of Computational Physics. 2013; 234:540–559.

l  He, J., M. Zhang, W. Lin, B. Colle, P. Liu, and A. M. Vogelmann (2013), The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains, J. Adv. Model. Earth Syst., 5, doi:10.1002/JAME.20042.

l  Juan Du, F. Fang, C.C. Pain, I.M. Navon, J. Zhu, D.A. Ham. POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow. Computers and Mathematics with Applications. 2013; 65:362-379.

l  Juan Du, I.M. Navon, J. Zhu, F. Fang, A.K. Alekseev. Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II: trust region POD 4-D VAR Data Assimilation. Computers&Mathematics with Applications. 2013; 65:380-394.

l  Jun Yang, Peng Gong, Rong Fu, Minghua Zhang, Jingming Chen, Shunlin Liang, Bing Xu, Jiancheng Shi and Robert Dickinson, 2013: The role of satellite remote sensing in climate change studies, Nature Climate Change 3 1001 PubDate: 2013-10-29|2013-10-29, DOI: 10.1038/nclimate2033

l  Lang, X., and Y. Sui, Changes in mean and extreme climates over China with a 2°C global warming, Chinese Science Bulletin, 2013, 58(12), 1453–1461.

l  LI Chao, ZHANG QingYun, January temperature anomalies over Northeast China and precursors, Chinese  Science  Buleltin, 2013, VoL.58, No.6, 2013 ,671-677

l  Li, F., Levis, S., and Ward, D. S., 2013a: Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1), Biogeosciences, 10, 2293-2314.

l  Lifeng Luo, Wei Tang, Zhaohui Lin, Eric F. Wood, 2013: Evaluation of summer temperature and precipitation predictions from NCEP CFSv2 retrospective forecast over China, Clim Dyn (2013) 41:2213–2230, DOI 10.1007/s00382-013-1927-1

l  Liang, X. -Z., and F. Zhang, 2013: Cloud-Aerosol-Radiation (CAR) Ensemble Modeling System. Atmos. Chem. Phys., 13, 8335-8364, doi: 10.5194/acp-13-8335-2013

l  Neale, Richard B., Jadwiga Richter, Sungsu Park, Peter H. Lauritzen, Stephen J. Vavrus, Philip J. Rasch, Minghua Zhang, 2013: The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments.J.Climate,26,5150–5168. doi: http://dx.doi.org/10.1175/JCLI-D-12-00236.1

l  Shao Pu, Zeng Xubin, David J. P. Moore, Zeng Xiaodong, Soil microbial respiration from observations and Earth System Models, Environ. Res. Lett., 2013, 8, doi:10.1088/1748-9326/8/3/034034.

l  Shao Pu, Zeng Xubin, Koichi Sakaguchi, Russell K. Monson, Zeng Xiaodong, Terrestrial carbon cycle - climate relations in eight CMIP5 earth system models, J. Climate, 2013, 26(22), 87448764, doi: 10.1175/JCLI-D-12-00831.1.

l  SHI Ning and BUEH Cholaw, 2013:Three-Dimensional Dynamic Feature of Two Arctic Oscillation Types, Advances in Atmospheric Sciences, 30 (4), 1039-1052, Doi: 10.1007/s00376-012-2077-9

l  Song, X., X. D. Zeng, and J. W. Zhu, 2013: Evaluating the tree population density and its impacts in CLM-DGVM, Adv. Atmos. Sci., 30(1), 116-124, doi: 10.1007/s00376-012-1271-0.

l  Song, X., and X. D. Zeng, 2013: Investigation of uncertainties of establishment schemes in Dynamic Global Vegetation Models, Adv. Atmos. Sci., 31(1), doi: 10.1007/s00376-013-3031-1.

l  Su Tonghua, Xue Feng and Zhang He, 2013: Simulating the Intraseasonal Variation of East Asian Summer Monsoon by IAP AGCM4.0. Advances in Atmospheric Sciences, doi: 10.1007/s00376-013-3029-8.

l  Xiangdong Zhang, Juanxiong He, Jing Zhang, Igor Polyakov, Rüdiger Gerdes, Jun Inoue, Peili Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1), 47-51

l  Zhang, F., X. -Z. Liang, Q. C. Zeng, Y. Gu, and S. J. Su, 2013a: Cloud-Aerosol-Radiation (CAR) Ensemble Modeling System: Overall accuracy and efficiency. Adv. in Atmos. Sci., 30, 955-973, doi: 10.1007/s00376-012- 2171-z

l  P. N. Blossey, C. S. Bretherton, M. Zhang, A. Cheng, S. Endo, T. Heus, Y. Liu, A. Lock, S. R. de Roode and K.-M. Xu, Marine low cloud sensitivity to an idealized climate change: The CGILS LES Intercomparison.J. Adv. Model. Earth Syst., 5, doi:10.1002/jame.20025.

l  Wang, Xiaocong and Minghua Zhang, 2013: An analysis of parameterization interactions and sensitivity of single-column model simulations to convection schemes in CAM4 and CAM5. J. Geophys. Res., DOI: 10.1002/jgrd.50690.

l  Zhang, F., X.-Z. Liang, J. Li, and Q.-C. Zeng, 2013b: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J. Geophys. Res., 118, 7733-7749

l  Zhang, Minghua. and 39 co-authors 2013: CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in General Circulation Models. Journal of  Advances in Modeling Earth Systems., DOI: 10.1002/2013MS000246

l  Zhang, Yi,  Rucong Yu, Jian Li, Weihua Yuan, Minghua Zhang, 2013: Dynamic and thermodynamic relations of distinctive stratus clouds on the lee side of the Tibetan Plateau in the cold season Journal of Climate. doi: http://dx.doi.org/10.1175/JCLI-D-13-00009.1

l  Zhang, H., M. Zhang, and Q. Zeng, 2013: Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models. Mon. Wea. Rev., 141, 1558-1576.

l  Zhang, R.-H., F. Zheng, J. Zhu, and Z.-G. Wang, 2013: A successful real-time forecast of the 2010-11 La Niña event. (Nature) Sci. Rep., 3, 1108; DOI:10.1038/srep01108.

l  Zheng, F., R.-H. Zhang, and J. Zhu, 2013: Effects of interannual salinity variability on barrier layer in the central equatorial Pacific diagnosed from Argo. Adv. Atmos. Sci., doi: 10.1007/s00376-013-3061-8.

l  Zeng, X.D., F. Li, and X. Song, 2013: Development of the IAP Dynamic Global Vegetation Model, Adv. Atmos. Sci.

l       (Accepted) doi:10.1007/s00376-013-3155-3

l  Zeng Gang, Wang Wei-Chyung, Sun Zhaobo, and Lin Zhaohui. Natural variability of East Asian summer monsoon simulated by NCAR Cam3 model. Proc. of SPIE Vol. 7454, 74541Adoi: 10.1117/12.825428

l  Zu,T., D.Wang, C. Yan, Igor Belkin, W. Zhuang, and J. Chen, 2013: Evolution of an anticyclonic eddy southwest of Taiwan, Ocean Dynamics, 63: 519-531

l  Li, F., Bond-Lamberty, B., and Levis, S., 2013b: Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century, Biogeosciences Discuss., 10, 17309-17350, doi:10.5194/bgd-10-17309-2013.

l  Sui, Y., and X. Lang, Monsoon change in East Asia in the 21st century: Results of RegCM3, Atmospheric and Oceanic Science Letters, 2013, 58(8):734-742

l  TANG Wei, LIN Zhao-Hui, LUO Li-Feng , 2013: Assessing the Seasonal Predictability of Summer Precipitation over the Huaihe River Basin with Multiple APCC Models, Atmos. Oceanic Sci. Lett., 6(4), 185-190,doi: 10.3878/j.issn.1674-2834.13.0025.

l  Wang, L.-W., F. Zheng, and J. Zhu, 2013: Preliminary studies on predicting the tropical Indian Ocean sea surface temperature through combined statistical methods and dynamic ENSO prediction. Atmos. Oceanic Sci. Lett., 6, 52–59.

l  Wang, L.-W., F. Zheng, and J. Zhu, 2013: Predicting Western Pacific Subtropical High Using a Combined Tropical Indian Ocean Sea Surface Temperature Forecast.  Atmos. Oceanic Sci. Lett., 6, 405–409.

l  Wu C L, Lin Z H. 2013: Uncertainty in Dust Budget over East Asia Simulated by WRF/Chem with Six Different Dust Emission Schemes. Atmos. Oceanic Sci. Lett., doi: 10.3878/j.issn.1674-2834.13.0045.

l  布和朝鲁, 谢作威,2013:东北冷涡环流及其动力学特征,气象科技进展, 33),34-39

l  陈丹、布和朝鲁、朱克云,2013:春末环贝加尔湖地区环流的年际和年代际变化及与中国温度降水的关系,大气科学, 37 (6)1199–1209

l  陈浩、曾晓东(2013): 植被年际变化对蒸散发影响的模拟研究。生态学报, 33, 4343-4353, DOI: 10.5846/stxb201101280145

l  陈红,2013,淮河流域夏季极端降水事件的统计预测模型研究,气候与环境研究,182):221-231

l  陈红,薛峰. 2013. 东亚夏季风和中国东部夏季降水年代际变化的模拟 [J]. 大气科学, 37 (5): 1143-1153.

l  符仙月, 布和朝鲁,2013:中国大范围持续性低温事件与中国南方降水异常,大气科学,37 (6)1247–1260

l  李超,张庆云,春季长江中下游旱涝的环流特征及对前期海温异常的响应,气象学报,2013年,71(3)452-461

l  张人禾,朱江,许建平,刘益民,李清泉,牛涛,2013 Argo大洋观测资料的同化及其在短期气候预测和海洋分析中的应用。大气科学,372),411-424

l  宗海锋, 陈烈庭.中国东部夏季风雨带季内变化各模态的环流及海温特征,大气科学.2013,37(5):1072-1082